{200,90}
Creative Common By SA

Arithmétique et géométrie {id_article}

vendredi 18 octobre 2013 par Matthieu GIROUX

L’éducation a été complexifiée bien avant que nous n’ayons plus la possibilité d’évoluer de soi-même par l’école. Pour que la population accepte l’impensable on peut expliquer l’expérience de la grenouille et de l’eau bouillante. La grenouille ne se rend pas compte qu’elle peut y mourir que si l’on ne chauffe l’eau que petit à petit.

De même si l’on n’applique pas un cours dans son quotidien on n’évolue pas grâce à ce cours. Alors l’école n’a plus son rôle moteur d’ascension morale, valorisant notre envie de construire pour nous permettre d’évoluer.

Évoluer par l’écriture permet pourtant de mieux comprendre les autres en se comprenant soi. Or l’écriture sert pour les autres à l’école. Pourtant quiconque a cette envie de construire en lui parce que nous sommes mus par l’envie de résoudre quoi que ce soit. Pourtant quiconque peut devenir passionné. La passion consiste à canaliser une envie forte pour réaliser quelque chose. La réalisation devient alors un jeu.

C’est lorsqu’un professeur est exigeant et pédagogue qu’il obtient le meilleur de ses élèves. Or le bon élève devient un peu un robot, car il répète la même méthode pour apprendre. Pourtant il peut y avoir plein de façons de comprendre un exercice. La géométrie permet d’en trouver beaucoup.

Seulement le cours magistral nous empêche de suffisamment engager notre passion . Ainsi l’arithmétique a remplacé en grande partie la géométrie. Cela fait que les sciences sont déconnectées du réel, car une formule mathématique doit être vérifiée physiquement pour être ajoutée dans une hypothèse scientifique. Ainsi la science va se rendre dépendante des formules mathématiques pour comprendre la matière en infiniment petit.

La géométrie permettrait de réduire fortement la durée des cours tout en permettant un meilleur épanouissement de l’élève. La formule (a+b)(a+b)=a2+b2+2ab peut être facilement démontrée géométriquement. Vous avez après une démonstration de l’identité remarquable.

Un théorème démontré par la géométrie

L’autre exemple est celui de Gauss et une de sa formule toujours non démontrée mais fonctionnelle. Les scientifiques ont du mal à démontrer de nouveau cette formule vraie. Comment un scientifique du passé peut-il est plus doué que l’ensemble des scientifiques actuels ?

La géométrie apprise à l’école est euclidienne. Ce genre de cours débute en général en disant que la droite ne peut pas se couper elle-même. Aussi la droite ne peut exister dans le monde réel puisqu’il n’y a pas de surface avec. Difficile à l’élève de se représenter ce genre d’éléments.

Il y a pourtant mieux que la géométrie euclidienne. C’est la géométrie constructive. Elle consiste à partir d’une forme pour en construire d’autres. Par exemple, on construit une parabole et une hyperbole à partir d’une ellipse. Avec ce genre de géométrie on peut se faciliter la compréhension d’un exercice. On peut aussi prouver des théorèmes. On pourrait même comprendre la matière en infiniment petit.

Pour aller plus loin les courbes et les zones représentant des équations ou inéquations linéaires nous font croire, soit que le monde se comprend en deux dimensions, soit que l’on ne peut pas résoudre certains problèmes. En effet les économistes aiment montrer des courbes qui montent tout le temps en ce moment. Ça ne fait pas travailler l’imagination.

Il existe pourtant la possibilité de comprendre plus facilement l’infini et notre économie avec des spirales logarithmiques. Ces spirales peuvent facilement faire comprendre l’évolution démographique dans le temps grâce à la science. Une explication de cette spirale logarithmique est dans la méthode Larouche-Riemann.

Action conique auto-similaire
Le cône représente l’évolution démographique idéale. Les cercles représentent les bons technologiques. La spirale représente la densité de flux d’énergie.

Vous la trouverez peut-être dans certains livres d’économie. Cette spirale utilise trois dimensions. Cela permet de mieux comprendre certains paramètres de l’économie, basés sur la démographie, c’est à dire le cône, la création d’énergie avec la spirale intérieure. L’exemple ci-dessus est l’évolution d’un monde évoluant correctement en société, un monde démocratique et républicain où les citoyens agissent.

Sources


Accueil | Contact | Plan du site | Espace privé | icone statistiques visites | info visites 37184

Site soutenant l'économie de travail... Un ami

     RSS fr RSS2 Se perfectionner

Creative Commons License